Tag Archives: decentralization

The negative exponential density gradient and decentralization

Many researchers have used the density gradient from the negative exponential model to study the decentralization of population and housing units in urban areas. The density gradient is the rate of decline of density with distance from the center of the city. A decrease or flattening of the density gradient has been considered to be evidence of the decentralization of population or housing. And the density gradient has been used as a measure of the amount of centralization in an urban area that could be used to compare levels of centralization with other urban areas.

I have estimated the density gradients for 43 large urban areas for each of the census years from 1950 to 2010. And I have developed a separate, “pure” measure of centralization of housing units which I described in the previous post. I am calling this measure the centralization ratio. So this gave me the means of actually looking at the extent to which the density gradient was a good measure of centralization and decentralization.

First, I looked at changes in the density gradient over time and compared it to changes in the centralization ratio. The relationship was reasonably strong. It is appropriate to use the change in the density gradient as a measure of decentralization.

Then I looked at the relationship between the magnitudes of the density gradient and the centralization ratio at single points in time. This time, virtually no relationship. The density gradient does not work as a measure of the level of centralization in an urban area that could be used to make comparisons with other urban areas.

What gives? Why such different findings? The key lay in the fact that the density gradient is strongly inversely related to the size of an urban area. Using the density gradient to predict the centralization ratio resulted in no relationship. But add number of housing units in the urban area to the model, controlling for the size of the area, and a strong relationship emerged. And this is why the change in the density gradient works as a measure of change in centralization over time. The size of the urban area is being subtracted out when you look at the change (with the exception of any change in size over the period).

Someone committed to the idea that the density gradient is a good measure of centralization might object that I have only shown that the centralization ratio and the density gradient are different, not that one is a better measure of centralization. I think I make a good case for the use of the centralization ratio. Also, in developing the measure, I calculated other measures of centralization for a sample of a dozen areas and they were all highly correlated. And an anecdotal point: The three urban areas in my study with the highest centralization ratios were New York, Chicago, and Philadelphia. And all three had density gradients that were below the mean for the 43 large urban areas I looked at.

Centralization in large urban areas

Many have examined the decentralization of population and housing units over time. A common approach has been to use the density gradient from the exponential model as a measure of centralization. I have estimated the parameters for the model for large urban areas since 1950. I wanted to consider how well the density gradient actually performed as a centralization measure (which will be the subject of the next post). But to do so, I needed a separate, good measure of the centralization of housing units.

I reviewed a variety of centralization measures in the literature and was not satisfied with any of them, so I developed my own. I wanted a measure that made maximum use of the data on the distribution of housing units by census tract. And I wanted the measure to be interpretable, to have meaning beyond a larger value indicating housing is more centralized. The measure involves calculating two values: One is the mean distance housing units in the urban area are from the center. The other is the mean distance they would be from the center if housing units were uniformly distributed in the area, densities everywhere the same, no centralization. The ratio of the actual to the uniform distance would, of course, be 1 if housing were uniformly distributed and would decline with decreasing mean distance to the center and greater centralization. The minimum value would be 0 if all housing were located at the center. I wanted a measure of centralization that would increase with greater centralization, so this ratio is subtracted from 1. This measure, which I am calling the centralization ratio, is the proportional reduction in mean distance housing units are located to the center compared with a uniform distribution. So a centralization ratio of 0.25, for example, would mean that the mean distance to the center is a quarter less than for an even distribution.

I calculated the centralization ratio for 59 large urban areas for each census year from 1950 to 2010. The widely expected decentralization did occur, on average, with the mean value dropping from 0.25 to 0.18 over this period. But decentralization was far from universal; 14 areas saw increases.

Levels of centralization varied greatly across the urban areas. The highest and lowest values in 2010, for example, were 0.46 and 0.08. New York, Chicago, and Philadelphia were the areas with the highest levels of centralization, not surprisingly. Tampa-St. Petersburg, El Paso, and Jacksonville were the lowest. Urban areas in the Northeast had the highest mean centralization in 2010, followed by those in the Midwest. Urban areas in the South had the lowest levels of centralization (and would have been even lower if Washington-Baltimore, more like other large urban areas in the Northeast Corridor, had been excluded). The very largest urban areas also tended to have higher levels of centralization.

More detail on this analysis using the centralization ratio is in the paper “The Degree of Centralization in Large Urban Areas in the U.S., 1950–2010,” which can be downloaded here.